База данных применения химических эффектов
основана на ТРИЗ (теория решения изобретательских задач)

На главную страницу | О проекте | Контакты

Вы находитесь здесь: dace.ru / Новости химии / Нанокапли гелия для анализа ионов

Архивы новостей:
2008 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2009 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2010 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2011 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2012 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2013 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2014 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2015 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2016 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2017 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2018 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2019 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2020 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2021 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2022 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2023 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2024 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2025 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь

Нанокапли гелия для анализа ионов

Химики разработали новую чувствительную разновидность ИК-спектроскопии, позволяющую анализировать строение молекулярных ионов, улавливая их наноразмерными каплями охлажденного гелия.

Поскольку в условиях регистрации спектра в жидком гелии происходит затормаживание колебательных и вращательных движений анализируемой частицы, новая модификация известного аналитического инструмента позволит получать важную информацию об ионах, важных для биологических процессов.

Нанокапли сверхтекучего гелия позволяют регистрировать инфракрасные спектры охлажденных молекулярных ионов. У ионов, которые покидают капли гелия, в результате возбуждения начинают проявляться колебательные движения, и их спектр может быть зарегистрирован

Нанокапли сверхтекучего гелия позволяют регистрировать инфракрасные спектры охлажденных молекулярных ионов. У ионов, которые покидают капли гелия, в результате возбуждения начинают проявляться колебательные движения, и их спектр может быть зарегистрирован.
(Рисунок из J. Am. Chem. Soc., 2010, DOI: 10.1021/ja1034655)


Инфракрасные спектры возникают в результате колебательного (отчасти вращательного) движения молекул, а именно — в результате переходов между колебательными уровнями основного электронного состояния молекул. Колебательные и вращательные движения определенных химических связей отличаются характеристическими частотами, что позволяет изучать строение химических соединений.

Возглавлявший исследование Марсел Драббелс (Marcel Drabbels) из Швейцарского Федерального Технологического Института отмечает, что при проведении исследований методом ИК при нормальной температуре наблюдается большое количество линий поглощения, затрудняющее расшифровку спектра. Он добавляет, что для упрощения регистрации спектра ИК исследователи из его группы помещали анализируемые молекулы в маленькие капли гелия, охлажденные до 0.4 Кельвина.

При температурах, близких к абсолютному нулю, в молекулах прекращаются вращательные и колебательные движения. Эти молекулы могут быть ионизированы действием ультрафиолета, после чего облучение инфракрасным светом может возбуждать их и инициировать колебания. Драббелс отмечает, что такой процесс существенно упрощает строение спектра, содержащего большое количество полезной информации. Исследователи из его группы использовали свой новый метод для регистрации спектра ионов анилиния и обнаружили, что новый подход на два порядка чувствительнее других существующих в настоящее время методик.

Драббелс подчеркивает, что, несмотря на простоту новой методики, она не может быть коммерциализирована непосредственно в ближайшее время. Одна из проблем заключается в небольшом размере сопла, использующегося для получения капель гелия – такое сопло может засориться из-за единственной пылинки – поэтому для новой системы необходима разработка специальной системы для подачи и охлаждения гелия.

Новый метод может применяться не только для изучения ионизированных форм важных биологически активных молекул, но и для неорганических кластеров или молекулярных агрегатов большого размера. Еще одним интересным преимуществом новой системы является то, что в условиях регистрации спектра с помощью нового метода ряд молекул может проявлять сверхпроводимость, и исследователи надеются, что новая методика позволит получить новую информацию и об этом явлении.

Кевин Леман (Kevin Lehmann), специалист по спектроскопии из Университета Виргиния отмечает, что швейцарские коллеги разработали новый уникальный подход к спектральному изучению сложных молекул, позволяющий получать высококачественные и хорошо разрешенные спектры ионов со сложным химическим строением.

Источник: J. Am. Chem. Soc., 2010, DOI: 10.1021/ja1034655

Источник: http://www.chemport.ru
02.10.2010 22:39




dace.ru © 2005-2025 гг.
Сделано dkos.ru