База данных применения химических эффектов
основана на ТРИЗ (теория решения изобретательских задач)

На главную страницу | О проекте | Контакты

Вы находитесь здесь: dace.ru / Новости химии / Созданы эффективные гибкие органические светодиоды

Архивы новостей:
2008 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2009 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2010 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2011 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2012 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2013 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2014 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2015 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2016 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2017 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2018 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь

Созданы эффективные гибкие органические светодиоды

Исследователи из Канады создали органические светоизлучающие диоды (ОСИД), размещенные на гибких полимерных подложках, сохраняющие высокую эффективность своих негибких аналогов. Результаты работы могут стать базой для качественного скачка в создании гибких дисплеев.

Органические светоизлучающие диоды отличаются рядом преимуществ по сравнению со своими неорганическими аналогами. Например, в отличие от обычных светоизлучающих диодов, органические светоизлучающие диоды не содержат токсичных тяжелых элементов, например – мышьяка, применение которых в электронике на законодательном уровне ограничено или запрещено в ряде стран. Другие преимущество органических светоизлучающих диодов – их аморфность, позволяющая придавать им различную форму. Наиболее перспективно нанесение органических светоизлучающих диодов на гибкую полимерную подложку – такой подход может оказаться полезным для создания компьютерных дисплеев, которые можно свернуть в рулон или светоизлучающих обоев.

Однако благодаря строению органических светоизлучающих диодов большое количество излучаемого ими света ими же и поглощается, что приводит к их низкой эффективности (КПД большинства ОСИД составляет 20-30%). Известным способом решения этой проблемы является нанесение светоизлучающих устройств на поверхность с высокой отражательной способностью, например – на стекле. Однако, поскольку стекло не является гибким материалом, эффективность гибких органических светоизлучающих диодов до настоящего времени оставляет желать лучшего.

Майклу Хиландеру (Michael Helander) из Университета Торонто нашел способ размещать органические светоизлучающие диоды на гибких поверхностях, сохраняя и даже увеличивая их эффективность. Вместо того чтобы непосредственно наносить ОСИД на светоотражающую подложку исследователи создали трехслойную систему, включающую в себя гибкую подложку, светоизлучающий диод, а между ними – ультратонкий светоотражающий слой, способный изгибаться одновременно со всей системой. Этот светоотражающий слой, представляющий собой слой пентоксида тантала (Ta2O5) толщиной 50-100 нм позволяет увеличить светоизлучающую эффективность новой системы до 63% (по зеленому свету).

Мишель Муччини (Michele Muccini), эксперт по органическим светоизлучающим диодам, отмечает, что достижение Хиландера имеет огромное значение для развития органической оптоэлектроники, добавляя, однако что стоимость технологии напыления слоя Ta2O5 может стать проблемой для массового производства дешевых гибких органических светоизлучающих диодов – желательно найти более дешевую альтернативу оксиду тантала.

Хиландер признает это, заявляя, что до появления новой технологии на рынке может пройти от трех до пяти лет. В дальнейших планов исследователей масштабирование процесса и методики для перехода от производства лабораторных прототипов гибких ОСИД площадью несколько квадратных сантиметров до оптоэлектронных устройств, площадь которых бы составляла несколько квадратных метров.

Источник: Nat. Photonics, DOI: 10.1038/nphoton.2011.259

Источник: http://www.chemport.ru
08.11.2011 15:26




dace.ru © 2005-2018 гг.