База данных применения химических эффектов
основана на ТРИЗ (теория решения изобретательских задач)

На главную страницу | О проекте | Контакты

Вы находитесь здесь: dace.ru / Новости химии / Графит как смазка для искусственных суставов

Архивы новостей:
2008 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2009 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2010 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2011 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2012 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2013 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2014 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2015 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2016 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2017 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2018 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2019 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2020 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2021 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2022 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2023 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2024 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь

Графит как смазка для искусственных суставов

Исследователи из США и Германии заявляют, что уменьшение трения в шарнирных сочленениях искусственных тазобедренных суставов обусловлено сухой графитовой смазкой, которая, в свою очередь, образуется из материалов импланта.

Эта информация не только полезна для дизайна и создания новых типов имлантов, но и позволяет ответить на ряд вопросов, связанных с взаимодействием графита с организмом человека.

Ежегодно в Великобритании проводится более 50000 операций по замещению тазобедренного сустава, в США количество таких операций превышает 200000. Хотя современная хирургия применяет все более долговечные и хорошо скользящие сплавы металлов для создания искусственных суставов, в настоящее время недостаточно хорошо известно, чем обусловлен низкий коэффициент трения сочленения искусственного сустава. Известно, что слой, определяющий трение, смачиваемость и износоустойчивость двух контактирующих поверхностей представляет собой трибологический слой (tribological layer), до настоящего времени исследования по изучению состава такого слоя не проводились.

Лоуренс Маркс (Laurence Marks) из Северо-Западного Университета (Иллинойс) и Альфонс Фишер (Alfons Fischer) из Университета Дуйсбурга-Эссена (Германия) изучили состав трибологического слоя.

Искусственный тазобедренный сустав сделан из кобальтово-хромо-молибденового сплава, содержащего 60% Co, 26% Cr и 5-7% Mo. До настоящего времени предполагалось, что слой между движущимися частями протеза имеет белковую природу – он состоит из денатурированных белков, образовавшихся из синовиальной жидкости, находящейся между суставами. Однако Маркс и Фишер обнаружили нечто иное – графит, который, кстати, применяется как сухая смазка в двигателях машин и механизмов.

Маркс обнаружил в сочленениях сустава графит, изучая образцы из отслуживших свой срок имплантов с помощью спектроскопии потерь энергии электронов [electron energy loss spectroscopy (EELS)].

Тем не менее – как мог оказаться графит в местах сочленения суставов? Маркс и Фишер предполагают, что альбумин из синовиальной жидкости восстанавливается до углерода под действием металлических деталей искусственного сустава, а постоянное давление шарнирных сочленений приводит к тому, что углерод переходит в графит. По крайней мере, такой процесс протекает в лабораторных условиях. Тем не менее, Дуглас Хансен (Douglas Hansen) сомневается в предложенном механизме образования графита, поскольку, неясна судьба азота, входящего в состав белков, хотя и не отрицает, что доказательства наличия графита в межсуставных сочленениях вполне достоверны.

Маркс отмечает, что результаты его открытия могут оказаться полезными для улучшения способа введения смазки в протезы тазобедренных суставов, а также защиты таких имплантов, заявляя, что уже разработал ряд способов модификации материала протезов, позволяющих способствовать росту графитового слоя.

Еще одним направлением исследований, истекающих из открытия Маркса, является дальнейшая судьба чешуек графита, попадающих в организм человека.

Источник: Science, 2011, 334, 1687; (DOI:10.1126/science.1213902)

Источник: http://www.chemport.ru
26.12.2011 18:28




dace.ru © 2005-2024 гг.
Сделано dkos.ru