База данных применения химических эффектов
основана на ТРИЗ (теория решения изобретательских задач)

На главную страницу | О проекте | Контакты

Вы находитесь здесь: dace.ru / Новости химии / Лазер вытравит одноатомный слой сульфида молибдена

Архивы новостей:
2008 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2009 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2010 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2011 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2012 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2013 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2014 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2015 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2016 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2017 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2018 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2019 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2020 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2021 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2022 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2023 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2024 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2025 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь

Лазер вытравит одноатомный слой сульфида молибдена

Графен в перспективе может оказаться полезным в создании электронных устройств, отличающихся большей гибкостью, меньшим размером и большей производительностью, чем классические кремниевые микросхемы. Однако, оказывается, не только графен может стать заменой кремния.

Исследователи предполагают, что еще одной альтернативой кремнию в создании электроники нового типа могут оказаться одноатомные слои дисульфида молибдена, обладающие при этом свойствами, которых графен лишен. Для возможности масштабного применения двумерного MoS2 исследователи разработали простую методику его получения.

Электроны перемещаются в графене в 100 раз быстрее, чем в кремнии, что позволяет создавать транзисторы с большей скоростью переключения – строительные блоки для построения компьютерных логических схем. Однако в отличие от кремния, графен не обладает запрещенной энергетической зоной – энергией, необходимой для переноса электрона и перехода материала от проводящего до непроводящего состояния. Андрес Кастелланос-Гомес (Andres Castellanos-Gomez) из Технологического Университета Дефт (Нидерланды) отмечает, что отсутствие запрещенной зоны не позволяет полностью «отключить» транзистор из графена.

При этом одноатомный слой MoS2 характеризуется большей по размеру «энергетической щелью», чем у кремния, это означает, что транзисторы из двумерного MoS2 не только можно полностью отключить, но и для этого потребуется гораздо меньше энергии, чем для отключения кремниевых транзисторов. Хотя скорость перемещения электронов в дисульфиде молибдена не такая высокая, как в графене, его прочность, гибкость и прозрачность сравнима со свойствами графена.

В настоящее время не существует быстрых и простых способов получения одноатомного слоя MoS2. Обычно исследователи используют уже знакомую по получению первых образцов графена технику отслаивания с помощью липкой ленты или за счет применения растворителя. Однако эти подходы не позволяют получить достаточное количество MoS2 для получения электронных устройств.

Кастелланос-Гомес случайно обнаружил простой и удобный метод получения плеток MoS2 достаточной толщины – облучение многослойных хлопьев дисульфида молибдена зеленым лазером приводило к испарению верхних слоев материала, и, как было подтверждено с помощью оптической микроскопии, атомно-силовой микроскопии и спектроскопии комбинационного рассеивания, остающийся после испарения материал представлял собой одноатомный слой MoS2. На основе нового материала был получен транзистор, который, как оказалось, имеет скорость переключения такую же, как и скорость переключения транзисторов, полученных из отшелушенных хлопьев MoS2.

Исследователи из группы Кастелланоса-Гомеса отмечают, что с помощью лазера появляется возможность получения участков однослойного MoS2 любой формы, что дает возможность создавать сложные схемы, состоящие из десятков транзисторов. Регулирование мощности лазерного излучения позволяет получать трех- или пятислойные хлопья MoS2, которые благодаря своим свойствам, могут быть использованы в сенсорных системах. Исследователи предполагают, что комбинация участков различной толщины в рамках одной схемы может оказаться полезной для изготовления сенсоров различного типа и принципиально новых оптоэлектронных устройств.

Источник: Nano Lett., 2012, DOI: 10.1021/nl301164v

Источник: http://www.chemport.ru
26.06.2012 19:33




dace.ru © 2005-2025 гг.
Сделано dkos.ru