База данных применения химических эффектов
основана на ТРИЗ (теория решения изобретательских задач)

На главную страницу | О проекте | Контакты

Вы находитесь здесь: dace.ru / Новости химии / Больше хлорофилла – больше биотоплива

Архивы новостей:
2008 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2009 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2010 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2011 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2012 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2013 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2014 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2015 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2016 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2017 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2018 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2019 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2020 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2021 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2022 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2023 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2024 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2025 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь

Больше хлорофилла – больше биотоплива

Ученые из Австралии разработали систему светофильтров из наночастиц, которая пропускает только свет тех длин волн, которые благоприятны для роста микроводорослей. Система может сделать производство биотоплива из водорослей более эффективным.

Фотосинтетические организмы, в особенности микроводоросли, занимают важное место в исследованиях, направленных на поиски нового возобновляемого топлива и сырья для химических реагентов. Скорость и эффективность, с которой микроводоросли растут, на сегодняшний день являются ограничивающим факторами для их применения в качестве конкурентоспособного коммерчески доступного продуктом. Таким образом, оптимизация их производства является несомненным приоритетом.

Колин Растон (Colin Raston) из Университета Флиндерс совместно с коллегами из Университета Западной Австралии разработал новый способ, позволяющий увеличить скорость образования и эффективность накопления фотопигментов, а именно хлорофилла, в водоросли. Исследователи культивировали водоросли Chlorella vulgaris в колбах, которые были окружены раствором, содержащим наночастицы золота и серебра. Изменение состава и размера наночастиц способствует изменению длин волн света, пропускаемых к водоросли.

Хотя свет и важен для процесса фотосинтеза, избыточная интенсивность света может повредить водоросль и оказать негативное влияние на фотосинтез. Способ Растона ограничивает доступ к водоросли вредоносных длин волн, и в то же время этот метод позволяет использовать обратное светорассеяние длин волн, что способствует увеличению образования фотохромного вещества. Большее количество хлорофилла означает, что может быть поглощено больше света и он может применяться для образования биомасс. Поскольку наночастицы не контактирует с водорослью, то проблем, связанных с примесями, не возникает.

Жанет Скотт (Janet Scott), эксперт в области технологий по «зеленой химии» из Университета Бат в Великобритании, говорит, что этот метод является прекрасным примером нестандартного подхода к делу. Скотт добавляет, что хотя метод пока что не готов к промышленному применению, его концепция превосходна и указывает на интересные возможности для дальнейшей работы над применением и теоретическим изучением обнаруженного явления.

Мнение Скотт разделяет Эван Бич (Evan Beach) из Йельского университета в США. Он также комментирует, что технологии по превращению водорослей в энергию будут возможны только на основе концепции биопереработки, по которой топливо производится наряду с более ценными продуктами. В настоящее время команда Растона нацелилась на тестирование своего метода на других организмах, способных к фотосинтезу.

Источник: Green Chem., 2013, DOI: 10.1039/c3gc41291a

Источник: http://www.chemport.ru
21.10.2013 21:04




dace.ru © 2005-2025 гг.
Сделано dkos.ru