База данных применения химических эффектов
основана на ТРИЗ (теория решения изобретательских задач)

На главную страницу | О проекте | Контакты

Вы находитесь здесь: dace.ru / Новости химии / Ионная и ковалентная доставка лекарств

Архивы новостей:
2008 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2009 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2010 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2011 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2012 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2013 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2014 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2015 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2016 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2017 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2018 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2019 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2020 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2021 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2022 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2023 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2024 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2025 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь

Ионная и ковалентная доставка лекарств

Ученые из Института органической химии им. Н.Д. Зелинского разработали концепцию API-IL (активный фармацевтический ингредиент – ионная жидкость, API - active pharmaceutical ingredient; IL – ionic liquid) для достижения структурного разнообразия в фармацевтических препаратах, а также создания лекарственных препаратов двойного действия.

Результаты исследования открывают новые возможности для дизайна препаратов с использованием ионных и ковалентных молекулярных взаимодействий.

Организм человека состоит из множества простых и сложных молекул, и все основные процессы в живом организме происходят в водных растворах. Таким образом, для эффективной работы лекарственного препарата необходимо, чтобы он растворялся в воде. Одна из проблем использования в качестве лекарств твёрдых веществ заключается в их полиморфизме, то есть способности формировать различные кристаллические структуры (полиморфные модификации). Полиморфы могут различаться по своим свойствам (таким как биологическая активность), и их формирование трудно контролировать.

Проблему полиморфизма кристаллов можно решить путем использования лекарственных препаратов в жидкой форме, поскольку применение растворов делает терапию более надежной и предсказуемой. Неудивительно, что сейчас активно исследуются способы растворения существующих активных фармацевтических ингредиентов. Эффективного решения этой проблемы можно добиться с помощью веществ с ионным строением. Хорошо известно, что превращение плохо растворимого вещества в соль может существенно улучшить его растворимость.

Группа ученых во главе В.П. Ананиковым показала, что ионные жидкости являются отличными «посредниками» превращения органических молекул в солевые структуры. В работе российских ученых было изучено три способа ввода активных фармацевтических ингредиентов в ионные жидкости: I) в качестве аниона или катиона (ионная связь); II) с помощью ковалентной связи; III) с одновременным использованием ионных и ковалентных связей.

Предлагаемая платформа для разработки препаратов имеет следующие преимущества:

1. Настраиваемая гидрофобность/липофильность для регулировки способности проникать через клеточные мембраны и другие биологические барьеры.

2. Ионное «ядро», позволяющее контролировать прочность ионной связи. Ионные жидкости поддаются «настройке» и могут быть легко оптимизированы для работы с различными фармацевтическими ингредиентами.

3. Вариабельный линкер для регулирования расстояния между ионным «ядром» и активным ингредиентом. Это линкер может содержать сайт ферментативного расщепления для целевого высвобождения активного фармацевтического ингредиента.

Ученые использовали салициловую кислоту (известный противовоспалительный препарат) в качестве модельного лекарственного средства. Молекулы салициловой кислоты были введены в ионные жидкости, после чего была исследована растворимость и биологическая активность по отношению к фибробластам человека и клеткам колоректальной аденокарциномы. Действительно, салициловая кислота сохранила свою активность в составе ионной жидкости, и ионная жидкость на ее основе показала более высокую растворимость в воде, по сравнению с чистой салициловой кислотой.

Исследование подтверждает преимущества использования концепции API-IL в фармацевтике. Особенно важно отметить доступность и разнообразие возможных комбинаций молекул. Весьма перспективным направлением является производство ионно-жидких препаратов «двойного действия», несущих два различных активных фармацевтических ингредиента. Этот подход позволит разработать комплексные методы лечения, направленные на устранение сразу нескольких причин патологий.

Источники: пресс-релиз ИОХ им. Н.Д. Зелинского РАН, ACS Med. Chem. Lett., 2015, DOI: 10.1021/acsmedchemlett.5b00258

Источник: http://www.chemport.ru
14.10.2015 14:24




dace.ru © 2005-2025 гг.
Сделано dkos.ru