База данных применения химических эффектов
основана на ТРИЗ (теория решения изобретательских задач)

На главную страницу | О проекте | Контакты

Вы находитесь здесь: dace.ru / Новости химии / Сверхпроводимость при юпитерианском давлении

Архивы новостей:
2008 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2009 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2010 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2011 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2012 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2013 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2014 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2015 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2016 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2017 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2018 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь

Сверхпроводимость при юпитерианском давлении

Водород является наиболее распространенным элементом во Вселенной, из него в основном состоят Солнце и газовые планеты-гиганты, такие как Юпитер и Сатурн. В последние годы свойства водорода стали интенсивным предметом изучения не только для космохимиков, но и для специалистов по материаловедению – эти исследования важны в рамках разработки концепции водородной энергетики.

Тем не менее, высокая способность водорода к диффузии и его высокая реакционная способность осложняет его стабилизацию при высоких или даже относительно высоких температурах. Для экспериментов с водородом требуются установки для создания высокого давления.

Группа исследователей из Университета Осака и Токийского технологического института смогла разработать технологию, позволяющую стабилизировать водород при высокой температура и высоком давлении и не допускающую его взаимодействия с материалом реактора.

Кацуя Симузу (Katsuya Shimizu) из Университета Осаки и Кенджи Охта (Kenji Ohta) из Токийского технологического Института совместно с Японским исследовательским институтом синхротронного излучения изучили фазовые трансформации горячего плотного жидкого водорода с помощью статических экспериментов, включающих в себя создание высокого давления за счет нагревания материала лазером на алмазном прессе [diamond anvil cell (DAC)]. Результаты продемонстрировали, что аномалии в эффективности нагрева, вероятно, можно отнести к фазовым переходам от двухатомного к одноатомному жидкому водороду (плазменный фазовый переход) в интервале давлений от 82 до 106 ГПа. Полученные данные позволяют более точно ограничить условия, в которых проходят границы фазовых переходов водородной плазмы и позволяет говорить о том, что критическая точка перехода находится в области более жестких условий, чем предполагалось на основе теоретического моделирования.

Наблюдавшийся плазменный фазовый переход нагретого до высокой температуры и сверхплотного жидкого водорода может относиться к переходу изолятор-металлический проводник, полученные результаты могут привести к более эффективному пониманию особенностей внутренней структуры и формирования магнитного поля планет-гигантов, главным образом, состоящим из водорода, как, например, Сатурн и Юпитер.

Также есть определенные надежды на то, что более детальное выяснение взаимосвязи между температурой, давлением водорода и его фазовым состоянием может привести к синтезу твердого металлического водорода, в котором, как ожидается, переход к сверхпроводимости может реализоваться при относительно высокой температуре или даже комнатной температуре.

Источник: Scientific Reports, 2015; 5: 16560 DOI: 10.1038/srep16560

Источник: http://www.chemport.ru
25.01.2016 11:21




dace.ru © 2005-2018 гг.