База данных применения химических эффектов
основана на ТРИЗ (теория решения изобретательских задач)

На главную страницу | О проекте | Контакты

Вы находитесь здесь: dace.ru / Новости химии / Химики напечатали перерабатываемый транзистор на бумажной подложке

Архивы новостей:
2008 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2009 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2010 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2011 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2012 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2013 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2014 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2015 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2016 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2017 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2018 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2019 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2020 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2021 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2022 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь

Химики напечатали перерабатываемый транзистор на бумажной подложке

Американские ученые напечатали перерабатываемый транзистор на бумажной подложке. Все части транзистора изготовили из нетоксичных углеродных материалов: наноцеллюлозы, углеродных нанотрубок и графена. Устройство может работать шесть месяцев при нормальной влажности и температуре, после чего углеродные нанотрубки и графен можно растворить и использовать снова. Результаты исследования опубликованы в журнале Nature Electronics.

Каждый год мы выбрасываем более пятидесяти миллионов тонн всевозможной электроники, а с ростом популярности носимых сенсоров и умных татуировок проблема встанет еще острей — ведь многие такие устройства будут одноразовыми. Электронные отходы нередко содержат в себе токсичные металлы и другие вещества, которые загрязняют почву и грунтовые воды. Поэтому ученые ищут материалы для электронных микросхем, которые можно было бы легко утилизировать после использования.

Американские ученые под руководством Аарона Франклина (Aaron D. Franklin) из Дьюксого Университета в Северной Каролине сделали большой шаг на пути к легкоперерабатываемой электронике. Они разработали тонкопленочный транзистор (устройство для усиления или переключения электронных сигналов, один из основных строительных блоков современной электроники), который можно напечатать поверх бумажной подложки. Транзистор полностью состоит из перерабатываемых материалов на основе углерода: в качестве полупроводника использовали углеродные нанотрубки (УНТ), в качестве проводящих контактов — графен, а в качестве диэлектрика — кристаллическую наноцеллюлозу.

Все части транзистора наносили последовательно на подложку из обычной фотобумаги методом аэрозольной печати. Сначала напечатали два электрода из графена — исток и сток будущего транзистора, и нанесли поверх слой УНТ. Заготовку промыли толуолом и тщательно высушили и нанесли слой наноцеллюлозы — диэлектрика, который закрыл исток и сток. Наконец, поверх напечатали третий графеновый электрод — затвор. Все слои печатали при комнатной температуре, только толуол для промывания подогрели до 80 градусов Цельсия. И углеродные нанотрубки и графен уже используются в печати электронных микросхем, поэтому с нанесением этих слоев у Франклина и его коллег не было сложности. А вот печать изолирующего слоя наноцеллюлозными «чернилами» авторы осуществили впервые.

Основная проблема была с большой вязкостью целлюлозных чернил, которая мешает напечатанным каплям сливаться друг с другом, из-за чего в полученном слое остаются пустоты. Авторы варьировали параметры аэрозольной печати, и всего напечатали 30 различных образцов наноцеллюлозного слоя. Монолитного изолирующего покрытия удалось добиться при скорости нанесения сорок пять кубических сантиметров чернил в минуту и концентрации наноцеллюлозы шесть массовых процентов.

Характеристики нового транзистора оказались вполне на уровне с традиционными транзисторами на основе неорганических пленок. На основе полученного транзистора изготовили мобильный сенсор на молочную кислоту, который позволяет количественно определять ее концентрации в диапазоне выше двух миллимоль.
Полученное устройство может проработать как минимум шесть месяцев при нормальной температуре и влажности. После завершения бумажная подложка и целлюлозный изолятор легко разлагаются в компосте, а УНТ и графен при желании можно переработать. Достаточно погрузить отработавший транзистор сначала в толуол, чтобы растворить слой УНТ, а затем в дистиллированную воду, чтобы растворить графен. Новое устройство, напечатанное с помощью восстановленных растворов УНТ и графена, работает почти так же хорошо, как и транзистор из свежих материалов. Авторы отметили минимальное снижение тока, связанное с более низкой проводимостью переработанного графена. Снижение проводимости, вероятно, вызвано увеличением вязкости в графеновых чернилах и Франклин и ученые рассчитывают исправить эту проблему, немного изменив формулу чернил.

Франклин и его коллеги использовали целлюлозный композит в качестве изолятора, однако целлюлоза может быть и пьезоэлектриком — например, слабые пьезоэлектрические свойства имеют многие виды древесины.

Источник: http://nplus1.ru
14.05.2021 00:11




dace.ru © 2005-2022 гг.
Сделано dkos.ru