База данных применения химических эффектов
основана на ТРИЗ (теория решения изобретательских задач)

На главную страницу | О проекте | Контакты

Вы находитесь здесь: dace.ru / Новости химии / Российские учёные определили роль Нобелевского белка

Архивы новостей:
2008 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2009 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2010 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2011 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2012 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2013 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2014 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2015 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2016 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2017 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь
2018 год: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь

Российские учёные определили роль Нобелевского белка

Широко используемый зелёный флуоресцентный белок (GFP), за открытие которого учёные в прошлом году получили Нобелевскую премию, наконец-то обрёл логическое объяснение своего значения для живых организмов.

Впервые белок был получен из тканей медузы Aequorea victoria в начале 60-х годов прошлого века. С тех пор он часто используется для отслеживания самых разных биологических процессов (на этой основе даже была построена видеосистема, позволяющая контролировать работу генов).

Ген GFP присоединяют к гену белка, за активностью которого необходимо проследить, в результате клетка вырабатывает сразу два белка, что позволяет отслеживать жизнь второго из них.

Почти полвека учёные пользовались этим проводником в мире полной темноты, не представляя, какова истинная функция белка в природе. А ведь он присутствует в великом множестве организмов, от растений до животных.

Началось всё с того, что команда российских учёных под руководством Константина Лукьянова из Института биоорганической химии имени академиков М.М.Шемякина и Ю.А.Овчинникова РАН решила исследовать странную функцию белка: он светится красным, когда в окружающем пространстве недостаточно кислорода.

Исследуя влияние различных молекул на происходящие процессы, учёные обнаружили, что зелёный флуоресцентный белок при внешнем освещении начинает светиться красным в присутствие молекул, которые являются акцепторами электронов, например, в присутствие бензохинона или феррицианида калия (красной кровяной соли). То есть происходит тот же процесс, что и при недостатке кислорода.

Биологи предположили, что под воздействием света возбуждённые электроны перескакивают на орбитали "соседних" молекул, изменяя таким образом структуру хромофора, отвечающего за цвет белка.

Тогда учёные провели эксперимент с биологическими молекулами, также являющимися акцепторами электронов (оба использованных соединения помогают клеткам получать энергию из сахаров). И опять под воздействием освещения GFP покраснел.

"Мы совершенно не ожидали, что хромофор внутри зелёного флуоресцентного белка может взаимодействовать и отдавать электроны химическим соединениям, находящимся вне белковой оболочки", — говорит Константин.

Чтобы совсем уж удостовериться в своих догадках учёные выделили GFP из нескольких живых организмов (включая медуз и планктон). Все (кроме тех, что содержали мутантные синие и голубые "версии" белка) показали ту же реакцию. Позже белок вживили в клетку млекопитающего и обнаружили, что и там проявляется данная "краснота".

"Так как переход к красному свечению был обнаружен во всех протестированных клетках, то мы полагаем, что этот процесс мог появиться в ходе эволюции очень давно, — говорит Лукьянов и добавляет. — Он похож на фотосинтез".

Значит ли это, что GFP может помогать организмам чувствовать свет? Неизвестно. Но уже сейчас ясно, что GFP можно будет использовать для того, чтобы отслеживать клеточные процессы окисления/восстановления.

О своих результатах биологи отчитались в журнале Nature Chemical Biology. И хотя пока не ясно, какие именно реакции происходят при изменении цвета белка, всем учёным необходимо помнить о нём, так как это может отразиться на результатах некоторых исследований.

Осталось выяснить, что же происходит с флуоресцентными белками других цветов, например с жёлтым (yellow fluorescent protein — YFP).

Источник: http://www.membrana.ru
28.04.2009 22:22




dace.ru © 2005-2018 гг.